
Dissecting containers and k8s pods

@xxradar

Philippe Bogaerts

What about today’s talk?

It’s all about exploring how container and pods do their magic.
What is a container actually?

How does a container relate to a Kubernetes pod?
Can we better assess the risk when we know things work?

Why do things go terribly wrong?

[opinions expressed are solely my own]

[opinions expressed are solely my own]

From code to prod

Edge ComputePublic Cloud Internet SaaSData Center

whoami

• Public Cloud Consultant System Engineer EMEA
• Co-founder and co-organizer https://brucon.org

• Training and pen-testing https://kubiosec.tech/

[opinions expressed are solely my own]

https://www.linkedin.com/in/philippebogaerts/ @xxradar

Breaking Stuff as a Hobby | Cloud Native Stuff | DevSecOps | Network and Application security |
Container and K8S security | K8s Networking | Security Advocate & Research |

Low and slow BBQ | Cocktails

https://brucon.org/
https://www.kubiosec.tech/
https://www.linkedin.com/in/philippebogaerts/

Why are containers so popular ?

During a Wednesday back in 2016 in SFO during booth duty …
Containers ?? Don’t know anything about it … what am I doing here ??

The next Friday evening in SFO airport while waiting for a plane back home,
I googled ‘docker’, installed docker on my MacBook and “build, ship and run” my first container …
and then I boarded the plane …

What is Cloud Native?

Cloud native is the software approach of building, deploying, and
managing modern applications in cloud computing environments.

Modern companies want to build highly scalable, flexible, and resilient
applications that they can update quickly to meet customer demands.

[opinions expressed are solely my own]

Docker made running containers easy !

Build, ship and run

Docker basics

How are containers build ?

$ cat Dockerfile

FROM ubuntu:latest

RUN apt-get update && apt-get install -y openssl
RUN apt-get -y install ca-certificates

USER xxradar

WORKDIR /scripts

COPY tlssan_scan.sh tlssan_scan.sh

ENTRYPOINT ["/scripts/tlssan_scan.sh"]

How are containers build (2)?

$ cat Dockerfile

Base Alpine Linux based image with OpenJDK JRE only
FROM openjdk:8-jre-alpine

copy application WAR (with libraries inside)
COPY target/spring-boot-*.war /app.war

specify default command
CMD ["/usr/bin/java", "-jar", "-Dspring.profiles.active=test", "/app.war"]

Image vulnerabilities

$ trivy image openjdk:8-jre-alpine | grep -i total

Total: 216 (UNKNOWN: 0, LOW: 106, MEDIUM: 79, HIGH: 27, CRITICAL: 4)

$ trivy image openjdk:11 | grep -i total

Total: 389 (UNKNOWN: 0, LOW: 146, MEDIUM: 98, HIGH: 118, CRITICAL: 27)

D3m0 0#01
Building and running a container

Containers vs. VM

Container runtimes

• The container runtime is the low-level component that creates and
runs containers.
• Containerd
• CRI-O
• Docker Engine
• Mirantis Container Runtime
• Podman
• …

• Not all runtimes can be used in K8S

Container Image (OCI specification)

/var/lib/docker
/var/lib/docker/aufs/diff/1b06661d...57x30604ee2b/app
/var/lib/docker/overlay2/4ca4af…0aa38d941a045fdb7d/diff/tmp

What makes containers a container?

• Linux namespaces
• Control groups
• Linux capabilities

[opinions expressed are solely my own]

Linux namespaces

• Control group
• isolates the root directory

• IPC
• isolates inter process communication

• Network
• isolates the network stack

• Mount
• isolates mount points

• Process ID (PID)
• isolates process IDs

• User ID
• isolates User and Group IDs

• UTS
• isolates hostnames and domain names

• Time

Linux Capabilities

• Two categories of processes
• privileged

• bypass all kernel permission checks
• effective user ID is 0, referred to as superuser or root

• unprivileged
• subject to full permission checking based on the process’s credentials

• Linux divides the privileges traditionally associated with superuser
into distinct units, known as capabilities, which can be independently
enabled and disabled.

https://man7.org/linux/man-pages/man7/capabilities.7.html

https://man7.org/linux/man-pages/man7/capabilities.7.html

Capabilities allowed by default

Capability Key Capability
AUDIT_WRITE Write records to kernel auditing log.

CHOWN Make arbitrary changes to file UIDs and GIDs (see chown(2)).

DAC_OVERRIDE Bypass file read, write, and execute permission checks.

FOWNER Bypass permission checks on operations that normally require the file system
UID of the process to match the UID of the file.

FSETID Don’t clear set-user-ID and set-group-ID permission bits when a file is modified.

KILL Bypass permission checks for sending signals.

MKNOD Create special files using mknod(2).

NET_BIND_SERVICE
Bind a socket to internet domain privileged ports (port numbers less than
1024).

NET_RAW Use RAW and PACKET sockets.

SETFCAP Set file capabilities.

SETGID Make arbitrary manipulations of process GIDs and supplementary GID list.

SETPCAP Modify process capabilities.

SETUID Make arbitrary manipulations of process UIDs.

SYS_CHROOT Use chroot(2), change root directory.

Capabilities not granted by default

Capability Key Capability Description

AUDIT_CONTROL Enable and disable kernel auditing; change auditing filter rules; retrieve auditing
status and filtering rules.

AUDIT_READ Allow reading the audit log via multicast netlink socket.

BLOCK_SUSPEND Allow preventing system suspends.

BPF Allow creating BPF maps, loading BPF Type Format (BTF) data, retrieve JITed code
of BPF programs, and more.

CHECKPOINT_RESTORE Allow checkpoint/restore related operations. Introduced in kernel 5.9.

DAC_READ_SEARCH Bypass file read permission checks and directory read and execute permission
checks.

IPC_LOCK Lock memory (mlock(2), mlockall(2), mmap(2), shmctl(2)).

IPC_OWNER Bypass permission checks for operations on System V IPC objects.

LEASE Establish leases on arbitrary files (see fcntl(2)).

LINUX_IMMUTABLE Set the FS_APPEND_FL and FS_IMMUTABLE_FL i-node flags.

MAC_ADMIN Allow MAC configuration or state changes. Implemented for the Smack LSM.

MAC_OVERRIDE Override Mandatory Access Control (MAC). Implemented for the Smack Linux
Security Module (LSM).

NET_ADMIN Perform various network-related operations.

NET_BROADCAST Make socket broadcasts and listen to multicasts.

PERFMON Allow system performance and observability privileged operations
using perf_events, i915_perf and other kernel subsystems

SYS_ADMIN Perform a range of system administration operations.

SYS_BOOT Use reboot(2) and kexec_load(2), reboot and load a new kernel for
later execution.

SYS_MODULE Load and unload kernel modules.

SYS_NICE Raise process nice value (nice(2), setpriority(2)) and change the
nice value for arbitrary processes.

SYS_PACCT Use acct(2), switch process accounting on or off.
SYS_PTRACE Trace arbitrary processes using ptrace(2).
SYS_RAWIO Perform I/O port operations (iopl(2) and ioperm(2)).
SYS_RESOURCE Override resource Limits.

SYS_TIME Set system clock (settimeofday(2), stime(2), adjtimex(2)); set real-
time (hardware) clock.

SYS_TTY_CONFIG Use vhangup(2); employ various privileged ioctl(2) operations on
virtual terminals.

SYSLOG Perform privileged syslog(2) operations.
WAKE_ALARM Trigger something that will wake up the system.

Privileged containers

• The --privileged flag gives all capabilities to the container, and it also
lifts all the limitations enforced by the device cgroup controller

Uncommon ?

• DIND – docker in docker
• https://hub.docker.com/_/docker

• Tracee
• https://github.com/aquasecurity/tracee

• Portainer
• https://docs.portainer.io/v/ce-2.11/start/install/server/docker/linux

• Traefik
• https://hub.docker.com/_/traefik

D3m0 0#02
Privileged container – stealing secrets

Mounting volumes

• Volumes can be mounted in pods
• Persistent storage

• Don’t mount critical paths
• docker socket
• /
• ... (ex. log directories)

https://github.com/xxradar/a_hackers_view/blob/master/examples/gaining_root/readme.md

https://github.com/xxradar/a_hackers_view/blob/master/examples/gaining_root/readme.md

Default Bridge Networking

eth0 eth1 lo0

docker0

Container0
172.17.0.2

Container1
172.17.0.3

IPTABLES

eth0 eth0

vethxxx vethyyy

172.17.0.1

SNAT

Docker networking

• Default bridge
• Non-default bridge
• MACVLAN
• IPVLAN
• --net=host
• --net=container:id
• Overlay (swarm)

Tip: https://xxradar.medium.com/docker-pentester-series-1-macvlan-be4bca3062f2

[opinions expressed are solely my own]

docker network create --ipv6 -d ipvlan \
-o parent=ens5 \
--subnet 2a05:d012:d41:8008:5a20::/80 \
--ip-range 2a05:d012:d41:8008:5a20::/96 ip6vlan

https://xxradar.medium.com/docker-pentester-series-1-macvlan-be4bca3062f2

Troubleshooting w/ TCPdump

docker run -it --net=container:www3 xxradar/hackon tcpdump -n

[opinions expressed are solely my own]

Runtime security and monitoring

• Tetragon

[opinions expressed are solely my own]

D3m0 0#03
Insecure mounts

D3m0 0#04
CICD

K8S Master K8S Node K8S Node K8S Node

Kubernetes - Nodes

• Hardware or VM
• Master node(s) & Worker nodes

K8S Master K8S Node K8S Node K8S Node

Container
Runtime

Container
Runtime

Container
Runtime

Container
Runtime

Kubernetes – Container Runtime

• Container runtimes
• CRI-O
• Containerd
• …

K8S Master K8S Node K8S Node K8S Node

K8S
kube-api, etcd,
scheduler …

K8S
kubelet, kube-proxy

K8S
kubelet, kube-proxy

K8S
kubelet, kube-proxy

Container
Runtime

Container
Runtime

Container
Runtime

Container
Runtime

Kubernetes – Control Plane

• K8S components are typically binaries or pods that communicate
over the network using the host network IP address

K8S Master K8S Node K8S Node K8S Node

Container
Runtime

Container
Runtime

Container
Runtime

Container
Runtime

Container Network Interface – CNI (Calico, KubeNet, Cilium …)

K8S
kube-api, etcd,
scheduler …

K8S
kubelet, kube-proxy

K8S
kubelet, kube-proxy

K8S
kubelet, kube-proxy

CNI - Container Network Interface

• K8S worloads (ex. Pods) need to communicate using IP networking.
The networking, IPAM, routing … is handled by the CNI (and not K8S)

K8S Master K8S Node K8S Node K8S Node

Container
Runtime

Container
Runtime

Container
Runtime

Container
Runtime

nginx redis nginx node

nginx redis nginxnode

Word
press

mysql
Word
press

Deploy app

alpine

Container Network Interface – CNI (Calico, KubeNet, Cilium …)

K8S
kube-api, etcd,
scheduler …

K8S
kubelet, kube-proxy

K8S
kubelet, kube-proxy

K8S
kubelet, kube-proxy

Kubernetes – Basic principles

What is a pod?

• a collection of one or more containers
• the smallest unit of a Kubernetes application

[opinions expressed are solely my own]

/pause nginx redis

netns

process1

process2

IPC

Process

UTS

Mnt

Pod name

process1process1

Example

[opinions expressed are solely my own]

Cluster egress (SNAT)

K8S
Master K8S Node K8S Node K8S Node

Container
Runtime

Container
Runtime

Container
Runtime

Container
Runtime

K8S
kube-api, etcd,
scheduler …

K8S
kubelet, kube-proxy

K8S
kubelet, kube-proxy

K8S
kubelet, kube-proxy

POD1
Name: client

IP:
10.10.26.5

eth0

R
Cali*

Eth0

SNAT on NodeIP
iptables

Observability and troubleshooting

• TCPdump
• EBPF

[opinions expressed are solely my own]

Network Security Policies

[opinions expressed are solely my own]

kubectl apply -f - <<EOF
apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
 name: allow-access-from-siege
 namespace: app-routable-demo
spec:
 endpointSelector:
 matchLabels:
 app: nginx-zone1
 ingress:
 - fromEndpoints:
 - matchLabels:
 app: siege
 toPorts:
 - ports:
 - port: "80"
 protocol: TCP
EOF

D3m0 0#05
K8S backdooring

Questions ?
Questions ?
https://meetups.kubiosec.tech

[opinions expressed are solely my own]

docker run -it --privileged --pid=host debian nsenter -t 1 -m -u -i sh

